Pd-Catalyzed Sequential Reactions via Allene Intermediate for the Synthesis of Polycyclic Frameworks Containing 2,3-Dihydrofuran Units

Shen, R.; Huang, X. Org. Lett. 2008, ASAP

Eric E. Buck Current Literature July 19, 2008

Previous work in the Huang group

Intramolecular [4 + 2] *cycloadditions of allenes*

Intramolecular [4 + 2] *cycloadditions of ene - allenes*

Title paper: The initial study and variation of the amine base

Synthesis of tricycles and variation of Aromatic functionality

entry	\mathbb{R}^1	R ²	Ar	yield (%)	
1	Me	Н	C_6H_5	73	
2	Me	Η	p-MeC ₆ H ₄	80	
3	Me	Н	o-BrC ₆ H ₄	68	
4	Me	Н	p-FC ₆ H ₄	79	
5	Н	Н	o-BrC ₆ H ₄	65	
6	Н	Н	p-MeC ₆ H ₄	76	
7	Me	Н	m-BrC ₆ H ₄	81	
8	Me	Н	o-MeOC ₆ H ₄	71	

entry	R ¹	R ²	Ar	yield (%)
9	Me	Me	C_6H_5	85
10	Н	Me	C_6H_5	81
11	Me	Me	p-FC ₆ H ₄	85
12	Н	Me	p-MeC ₆ H ₄	75
13	Н	Me	p-FC ₆ H ₄	80

Shen, R.; Huang, X. Org. Lett. 2008, ASAP

	entry	\mathbb{R}^1	Ar	time (h)	yield (%)
Chan Da Haana V	1	Н	C_6H_5	18	55 (46)
	2	Me	p-MeC ₆ H ₄	24	63
<i>Org. Lett.</i> 2008 , ASAP	3	Н	p-MeC ₆ H ₄	20	58
	4	Н	p-ClC ₆ H ₄	16	63
	5	Н	p-FC ₆ H ₄	10	71
	6	Me	p-FC ₆ H ₄	10	76

7 Me $o-BrC_6H_4$ 24 h or 18 h -

Proposed Mechanism

Eric Buck @ Wipf Group

A competing side reaction

3-iodobuteneolides

8a: $R^2 = H$, Ar = Ph (76%)8b: $R^2 = H$, $Ar = p - FC_6H_4 (80\%)$ 8c: $R^2 = CH_3$, $Ar = 0 - MeOC_6H_4 (68\%)$ 8d: $R^2 = H$, Ar = 10-anthracene (61%)

8e: Ar = 0-MeOC₆H₄ (60%) **8f**: Ar = p-FC₆H₄ (81%)

8g: Ar = p-MeC₆H₄ (61%)

Additional characteristics to probe

Panepophenanthrin

- Other functional groups located at the "Ar" position
- Structural complexity

Sekizawa, R.; Ikeno, S.; Nakamura, H.; Naganawa, H.; Matsui, S.; Iinuma, H.; Takeuchi, T. *J. Nat. Prod.* **2002**, 65, 1491 - 1493

- Substrate control on stereochemistry
- Other Pd⁽⁰⁾ sources

Mild conditions to construct polycyclic ring systems containing a 2,3-dihydrofurnan moiety using a Pd⁽⁰⁾ catalyst.

Construction of these polycyclic rings systems was achieved through a cascade process utilizing a Sonogashira coupling, allene formation through propargyl isomerization, and subsequent 4 + 2 cycloaddition.